add py3/node soln

This commit is contained in:
Sangeeth Sudheer 2022-04-16 00:06:19 +05:30
parent 56e8fc22e6
commit 1153573284
3 changed files with 93 additions and 0 deletions

View File

@ -0,0 +1,27 @@
Given the `root` of a binary search tree and the lowest and highest boundaries as `low` and `high`, trim the tree so that all its elements lies in `[low, high]`. Trimming the tree should **not** change the relative structure of the elements that will remain in the tree (i.e., any node's descendant should remain a descendant). It can be proven that there is a **unique answer**.
Return _the root of the trimmed binary search tree_. Note that the root may change depending on the given bounds.
**Example 1:**
![](https://assets.leetcode.com/uploads/2020/09/09/trim1.jpg)
Input: root = [1,0,2], low = 1, high = 2
Output: [1,null,2]
**Example 2:**
![](https://assets.leetcode.com/uploads/2020/09/09/trim2.jpg)
Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3
Output: [3,2,null,1]
**Constraints:**
* The number of nodes in the tree in the range `[1, 104]`.
* `0 <= Node.val <= 104`
* The value of each node in the tree is **unique**.
* `root` is guaranteed to be a valid binary search tree.
* `0 <= low <= high <= 104`

View File

@ -0,0 +1,29 @@
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} low
* @param {number} high
* @return {TreeNode}
*/
function trimBST(root, low, high) {
if (!root) {
return null;
}
if (root.val < low) {
return trimBST(root.right, low, high);
} else if (root.val > high) {
return trimBST(root.left, low, high);
} else {
root.left = trimBST(root.left, low, high);
root.right = trimBST(root.right, low, high);
return root;
}
};

View File

@ -0,0 +1,37 @@
# Time: O(N)
# Space: O(N) due to call stack
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
# Recursion approach
def trim(node):
# Base case
if node is None:
return None
if node.val < low:
# Cause everything to the left will be
# less than `low` and hence trimmed
return trim(node.right)
elif node.val > high:
# Cause everything to the right will be
# greater than `high` and hence trimmed
return trim(node.left)
else:
# `node.val` is between [low, high] so
# just need to trim their left and right
# subtrees
node.left = trim(node.left)
node.right = trim(node.right)
return node
return trim(root)