binary-search-tree-iterator add py3 suboptimal soln
This commit is contained in:
parent
728a3f0c82
commit
344731ed23
42
0173_binary-search-tree-iterator/README.md
Normal file
42
0173_binary-search-tree-iterator/README.md
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
Implement the `BSTIterator` class that represents an iterator over the **[in-order traversal](https://en.wikipedia.org/wiki/Tree_traversal#In-order_(LNR))** of a binary search tree (BST):
|
||||||
|
|
||||||
|
* `BSTIterator(TreeNode root)` Initializes an object of the `BSTIterator` class. The `root` of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.
|
||||||
|
* `boolean hasNext()` Returns `true` if there exists a number in the traversal to the right of the pointer, otherwise returns `false`.
|
||||||
|
* `int next()` Moves the pointer to the right, then returns the number at the pointer.
|
||||||
|
|
||||||
|
Notice that by initializing the pointer to a non-existent smallest number, the first call to `next()` will return the smallest element in the BST.
|
||||||
|
|
||||||
|
You may assume that `next()` calls will always be valid. That is, there will be at least a next number in the in-order traversal when `next()` is called.
|
||||||
|
|
||||||
|
**Example 1:**
|
||||||
|
|
||||||
|
![](https://assets.leetcode.com/uploads/2018/12/25/bst-tree.png)
|
||||||
|
|
||||||
|
Input
|
||||||
|
["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"]
|
||||||
|
[[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
|
||||||
|
Output
|
||||||
|
[null, 3, 7, true, 9, true, 15, true, 20, false]
|
||||||
|
|
||||||
|
Explanation
|
||||||
|
BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
|
||||||
|
bSTIterator.next(); // return 3
|
||||||
|
bSTIterator.next(); // return 7
|
||||||
|
bSTIterator.hasNext(); // return True
|
||||||
|
bSTIterator.next(); // return 9
|
||||||
|
bSTIterator.hasNext(); // return True
|
||||||
|
bSTIterator.next(); // return 15
|
||||||
|
bSTIterator.hasNext(); // return True
|
||||||
|
bSTIterator.next(); // return 20
|
||||||
|
bSTIterator.hasNext(); // return False
|
||||||
|
|
||||||
|
|
||||||
|
**Constraints:**
|
||||||
|
|
||||||
|
* The number of nodes in the tree is in the range `[1, 105]`.
|
||||||
|
* `0 <= Node.val <= 106`
|
||||||
|
* At most `105` calls will be made to `hasNext`, and `next`.
|
||||||
|
|
||||||
|
**Follow up:**
|
||||||
|
|
||||||
|
* Could you implement `next()` and `hasNext()` to run in average `O(1)` time and use `O(h)` memory, where `h` is the height of the tree?
|
@ -0,0 +1,33 @@
|
|||||||
|
# Time: O(N)
|
||||||
|
# Space: O(N)
|
||||||
|
|
||||||
|
# Definition for a binary tree node.
|
||||||
|
# class TreeNode:
|
||||||
|
# def __init__(self, val=0, left=None, right=None):
|
||||||
|
# self.val = val
|
||||||
|
# self.left = left
|
||||||
|
# self.right = right
|
||||||
|
from collections import deque
|
||||||
|
|
||||||
|
class BSTIterator:
|
||||||
|
items = None
|
||||||
|
|
||||||
|
def __init__(self, root: Optional[TreeNode]):
|
||||||
|
def inorder(node):
|
||||||
|
return inorder(node.left) + [node.val] + inorder(node.right) if node else []
|
||||||
|
|
||||||
|
# In-order traversal of a BST gives us values in
|
||||||
|
# sorted order
|
||||||
|
self.items = deque(inorder(root))
|
||||||
|
|
||||||
|
def next(self) -> int:
|
||||||
|
return self.items.popleft()
|
||||||
|
|
||||||
|
def hasNext(self) -> bool:
|
||||||
|
return len(self.items) > 0
|
||||||
|
|
||||||
|
|
||||||
|
# Your BSTIterator object will be instantiated and called as such:
|
||||||
|
# obj = BSTIterator(root)
|
||||||
|
# param_1 = obj.next()
|
||||||
|
# param_2 = obj.hasNext()
|
Loading…
Reference in New Issue
Block a user