feat(18-4sum): add py3 solution
This commit is contained in:
parent
8db111bcf8
commit
813d8e0ccc
21
0018_4sum/README.md
Normal file
21
0018_4sum/README.md
Normal file
@ -0,0 +1,21 @@
|
||||
Given an array `nums` of `n` integers, return _an array of all the unique quadruplets_ `[nums[a], nums[b], nums[c], nums[d]]` such that:
|
||||
|
||||
* `0 <= a, b, c, d < n`
|
||||
* `a`, `b`, `c`, and `d` are distinct.
|
||||
* `nums[a] + nums[b] + nums[c] + nums[d] == target`
|
||||
|
||||
You may return the answer in any order.
|
||||
|
||||
Example 1:
|
||||
|
||||
Input: nums = [1,0,-1,0,-2,2], target = 0 Output: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
|
||||
|
||||
Example 2:
|
||||
|
||||
Input: nums = [2,2,2,2,2], target = 8 Output: [[2,2,2,2]]
|
||||
|
||||
Constraints:
|
||||
|
||||
* `1 <= nums.length <= 200`
|
||||
* `-109 <= nums[i] <= 109`
|
||||
* `-109 <= target <= 109`
|
41
0018_4sum/python3/solution.py
Normal file
41
0018_4sum/python3/solution.py
Normal file
@ -0,0 +1,41 @@
|
||||
# NOTE: Far from the most optimal solution to the problem.
|
||||
# Time complexity: O(n^3)
|
||||
# Space complexity: O(n^2) // NOTE: Really? And how?
|
||||
class Solution:
|
||||
def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
|
||||
arr_len = len(nums)
|
||||
|
||||
# Helps keep out duplicates
|
||||
nums.sort()
|
||||
|
||||
# Will be a dict with each key storing a `set` of 2-tuples (pair of nums)
|
||||
diff_cache = {}
|
||||
|
||||
quadruplets = set()
|
||||
|
||||
# No point in iterating with the last element since we won't be adding
|
||||
# any new quadruplets at that point
|
||||
for i in range(1, arr_len - 1):
|
||||
for j in range(i + 1, arr_len):
|
||||
current_sum = nums[i] + nums[j]
|
||||
difference = target - current_sum
|
||||
|
||||
if difference in diff_cache:
|
||||
# diff_cache could have multiple pairs that add up to the same
|
||||
# `difference`. We need to form quadruplets with all of them
|
||||
# and store them in `quadruplets`
|
||||
for pair in diff_cache[difference]:
|
||||
quadruplets.add(pair + (nums[i], nums[j]))
|
||||
|
||||
# Compute sum with every element to the left of i and store
|
||||
# in diff_cache. We do this at this later point to avoid duplicates
|
||||
for k in range(0, i):
|
||||
current_sum = nums[i] + nums[k]
|
||||
|
||||
if current_sum in diff_cache:
|
||||
diff_cache[current_sum].add((nums[i], nums[k]))
|
||||
else:
|
||||
# This has to be a set to avoid duplicates
|
||||
diff_cache[current_sum] = { (nums[i], nums[k]) }
|
||||
|
||||
return quadruplets
|
Loading…
Reference in New Issue
Block a user