trapping-rain-water py3
This commit is contained in:
parent
a115f39b17
commit
ea19828ef3
61
0042_trapping-rain-water/python3/extra_space.py
Normal file
61
0042_trapping-rain-water/python3/extra_space.py
Normal file
@ -0,0 +1,61 @@
|
||||
# Time: O(N)
|
||||
# Space: O(N)
|
||||
|
||||
class Solution:
|
||||
def trap(self, heights: List[int]) -> int:
|
||||
if len(heights) < 2: return 0
|
||||
|
||||
# For every ith height, we need to calculate the max height
|
||||
# on left and max on right of it
|
||||
max_lefts, max_rights = [0] * len(heights), [0] * len(heights)
|
||||
|
||||
maxl = 0
|
||||
for i in range(len(heights)):
|
||||
max_lefts[i] = maxl
|
||||
maxl = max(maxl, heights[i])
|
||||
|
||||
maxr = 0
|
||||
for j in range(len(heights) - 1, -1, -1):
|
||||
max_rights[j] = maxr
|
||||
maxr = max(maxr, heights[j])
|
||||
|
||||
print(max_lefts)
|
||||
print(max_rights)
|
||||
|
||||
# For every ith height, we can now compute the water output it can hold
|
||||
# by doing the following:
|
||||
#
|
||||
# min(max_height_to_left, max_height_to_right) - height_of_bar
|
||||
#
|
||||
# If we ignore height_of_bar for a moment, the amount of water that can be
|
||||
# held would be constrained by the least heights out of left/right.
|
||||
#
|
||||
# 3
|
||||
# 2 |
|
||||
# | |
|
||||
# | 0 |
|
||||
#
|
||||
# In the above case, would be min(2, 3) == 2. But, if we fill the space up with a bar
|
||||
# then:
|
||||
#
|
||||
# 3
|
||||
# 2 |
|
||||
# | 1 |
|
||||
# | | |
|
||||
#
|
||||
# We can't put 2 water units. We need to subtract the height of the bar from the prev
|
||||
# min() which will give us 1.
|
||||
#
|
||||
# NOTE: We need to do this for every ith height in the array.
|
||||
|
||||
output = 0
|
||||
for i, h in enumerate(heights):
|
||||
value = min(max_lefts[i], max_rights[i]) - heights[i]
|
||||
|
||||
# It's possible that ith height is very large, causing
|
||||
# the expression above to give us -ve value. In this case
|
||||
# we just ignore it (i.e, 0 output for this ith height)
|
||||
if value > 0:
|
||||
output += value
|
||||
|
||||
return output
|
@ -0,0 +1,48 @@
|
||||
# Time: O(N)
|
||||
# Space: O(N)
|
||||
|
||||
class Solution:
|
||||
def trap(self, heights: List[int]) -> int:
|
||||
# Two pointer approach
|
||||
left, right = 0, len(heights) - 1
|
||||
|
||||
# Since while scanning the array, at a given index i, we
|
||||
# only need to consider the minimum of max_left_heights and
|
||||
# max_right_heights, we just need to keep moving from both
|
||||
# ends and keep track of the maximum height seen so far. We
|
||||
# can then compare these two heights and decide from which
|
||||
# side to move next.
|
||||
max_left = max_right = 0
|
||||
|
||||
output = 0
|
||||
while left <= right:
|
||||
# By the formula from the DP approach:
|
||||
#
|
||||
# min(max_left, max_right) - heights[i]
|
||||
#
|
||||
# If max_left <= max_right, formula becomes:
|
||||
#
|
||||
# max_left - heights[i]
|
||||
#
|
||||
if max_left <= max_right:
|
||||
# Shorter form to avoid -ve values
|
||||
output += max(max_left - heights[left], 0)
|
||||
|
||||
max_left = max(max_left, heights[left])
|
||||
left += 1
|
||||
# By the formula from the DP approach:
|
||||
#
|
||||
# min(max_left, max_right) - heights[i]
|
||||
#
|
||||
# If max_left > max_right, formula becomes:
|
||||
#
|
||||
# max_right - heights[i]
|
||||
#
|
||||
else:
|
||||
output += max(max_right - heights[right], 0)
|
||||
|
||||
max_right = max(max_right, heights[right])
|
||||
right -= 1
|
||||
|
||||
|
||||
return output
|
Loading…
Reference in New Issue
Block a user