feat(0789_kth-largest-element-in-a-stream): add py3 soln
This commit is contained in:
parent
da753b2b03
commit
f2c76ac3f2
32
0789_kth-largest-element-in-a-stream/README.md
Normal file
32
0789_kth-largest-element-in-a-stream/README.md
Normal file
@ -0,0 +1,32 @@
|
||||
Design a class to find the `kth` largest element in a stream. Note that it is the `kth` largest element in the sorted order, not the `kth` distinct element.
|
||||
|
||||
Implement `KthLargest` class:
|
||||
|
||||
* `KthLargest(int k, int[] nums)` Initializes the object with the integer `k` and the stream of integers `nums`.
|
||||
* `int add(int val)` Appends the integer `val` to the stream and returns the element representing the `kth` largest element in the stream.
|
||||
|
||||
**Example 1:**
|
||||
|
||||
Input
|
||||
["KthLargest", "add", "add", "add", "add", "add"]
|
||||
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
|
||||
Output
|
||||
[null, 4, 5, 5, 8, 8]
|
||||
|
||||
Explanation
|
||||
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
|
||||
kthLargest.add(3); // return 4
|
||||
kthLargest.add(5); // return 5
|
||||
kthLargest.add(10); // return 5
|
||||
kthLargest.add(9); // return 8
|
||||
kthLargest.add(4); // return 8
|
||||
|
||||
|
||||
**Constraints:**
|
||||
|
||||
* `1 <= k <= 104`
|
||||
* `0 <= nums.length <= 104`
|
||||
* `-104 <= nums[i] <= 104`
|
||||
* `-104 <= val <= 104`
|
||||
* At most `104` calls will be made to `add`.
|
||||
* It is guaranteed that there will be at least `k` elements in the array when you search for the `kth` element.
|
@ -0,0 +1,45 @@
|
||||
# Naive approach, will TLE
|
||||
# Time for each add: O(k)
|
||||
class KthLargest:
|
||||
|
||||
def __init__(self, k: int, nums: List[int]):
|
||||
self.k = k
|
||||
|
||||
len_nums = len(nums)
|
||||
|
||||
# Only keep max k elements, rest are useless
|
||||
if len_nums >= k:
|
||||
self.nums = sorted(nums)[len_nums - k:]
|
||||
# If we're provided less than k elements, we
|
||||
# will it up with least possible number
|
||||
else:
|
||||
self.nums = [
|
||||
*([float("-inf")] * (k - len_nums)),
|
||||
*sorted(nums)
|
||||
]
|
||||
|
||||
def add(self, val: int) -> int:
|
||||
# Find the right place for val in the list
|
||||
# of length k
|
||||
|
||||
i = self.k - 1
|
||||
while i >= 0 and val < self.nums[i]:
|
||||
i -= 1
|
||||
|
||||
# If val is big enough to fit in the list, shift
|
||||
# existing elements to left
|
||||
j = 0
|
||||
while j < i:
|
||||
self.nums[j] = self.nums[j + 1]
|
||||
j += 1
|
||||
|
||||
if i >= 0:
|
||||
self.nums[i] = val
|
||||
|
||||
# kth largest element is always at index 0
|
||||
return self.nums[0]
|
||||
|
||||
|
||||
# Your KthLargest object will be instantiated and called as such:
|
||||
# obj = KthLargest(k, nums)
|
||||
# param_1 = obj.add(val)
|
26
0789_kth-largest-element-in-a-stream/python3/solution.py
Normal file
26
0789_kth-largest-element-in-a-stream/python3/solution.py
Normal file
@ -0,0 +1,26 @@
|
||||
import heapq
|
||||
|
||||
class KthLargest:
|
||||
|
||||
def __init__(self, k: int, nums: List[int]):
|
||||
self.k = k
|
||||
self.heap = nums
|
||||
heapq.heapify(self.heap)
|
||||
|
||||
# Keep removing elements until heap size is k
|
||||
while len(self.heap) > k:
|
||||
heapq.heappop(self.heap)
|
||||
|
||||
|
||||
def add(self, val: int) -> int:
|
||||
heapq.heappush(self.heap, val)
|
||||
|
||||
if len(self.heap) > self.k:
|
||||
heapq.heappop(self.heap)
|
||||
|
||||
return self.heap[0]
|
||||
|
||||
|
||||
# Your KthLargest object will be instantiated and called as such:
|
||||
# obj = KthLargest(k, nums)
|
||||
# param_1 = obj.add(val)
|
Loading…
Reference in New Issue
Block a user