feat(0789_kth-largest-element-in-a-stream): add py3 soln

This commit is contained in:
Sangeeth Sudheer 2022-04-09 01:21:26 +05:30
parent da753b2b03
commit f2c76ac3f2
3 changed files with 103 additions and 0 deletions

View File

@ -0,0 +1,32 @@
Design a class to find the `kth` largest element in a stream. Note that it is the `kth` largest element in the sorted order, not the `kth` distinct element.
Implement `KthLargest` class:
* `KthLargest(int k, int[] nums)` Initializes the object with the integer `k` and the stream of integers `nums`.
* `int add(int val)` Appends the integer `val` to the stream and returns the element representing the `kth` largest element in the stream.
**Example 1:**
Input
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
Output
[null, 4, 5, 5, 8, 8]
Explanation
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // return 4
kthLargest.add(5); // return 5
kthLargest.add(10); // return 5
kthLargest.add(9); // return 8
kthLargest.add(4); // return 8
**Constraints:**
* `1 <= k <= 104`
* `0 <= nums.length <= 104`
* `-104 <= nums[i] <= 104`
* `-104 <= val <= 104`
* At most `104` calls will be made to `add`.
* It is guaranteed that there will be at least `k` elements in the array when you search for the `kth` element.

View File

@ -0,0 +1,45 @@
# Naive approach, will TLE
# Time for each add: O(k)
class KthLargest:
def __init__(self, k: int, nums: List[int]):
self.k = k
len_nums = len(nums)
# Only keep max k elements, rest are useless
if len_nums >= k:
self.nums = sorted(nums)[len_nums - k:]
# If we're provided less than k elements, we
# will it up with least possible number
else:
self.nums = [
*([float("-inf")] * (k - len_nums)),
*sorted(nums)
]
def add(self, val: int) -> int:
# Find the right place for val in the list
# of length k
i = self.k - 1
while i >= 0 and val < self.nums[i]:
i -= 1
# If val is big enough to fit in the list, shift
# existing elements to left
j = 0
while j < i:
self.nums[j] = self.nums[j + 1]
j += 1
if i >= 0:
self.nums[i] = val
# kth largest element is always at index 0
return self.nums[0]
# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)

View File

@ -0,0 +1,26 @@
import heapq
class KthLargest:
def __init__(self, k: int, nums: List[int]):
self.k = k
self.heap = nums
heapq.heapify(self.heap)
# Keep removing elements until heap size is k
while len(self.heap) > k:
heapq.heappop(self.heap)
def add(self, val: int) -> int:
heapq.heappush(self.heap, val)
if len(self.heap) > self.k:
heapq.heappop(self.heap)
return self.heap[0]
# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)