# Time: O(N) # Space: O(N) # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def goodNodes(self, root: TreeNode) -> int: def dfs(node, max_value) -> int: ''' Perform pre-order traversal and keep track of max elements in the tree. Any subsequent traversal can then compare against the updated max_value to see if it's a good node or not ''' # If no left/right nodes, then we can just return 0 if not node: return 0 # Current node is good if it's value is greater than or # equal to the `max_value` seen so far res = 1 if max_value <= node.val else 0 # Compute the new max value, the current node could be it max_value = max(max_value, node.val) # Do traversal on left and right nodes and add their units res += dfs(node.left, max_value) + dfs(node.right, max_value) # This will indicate the count return res return dfs(root, root.val)