fix(threads, smart pointers): Swap order of threads and smart pointers exercises

closes #1541
This commit is contained in:
luhem7 2023-06-03 10:20:29 -04:00
parent 30291a3c25
commit a96bbcd967

122
info.toml
View File

@ -905,67 +905,6 @@ The fold method can be useful in the count_collection_iterator function.
For a further challenge, consult the documentation for Iterator to find For a further challenge, consult the documentation for Iterator to find
a different method that could make your code more compact than using fold.""" a different method that could make your code more compact than using fold."""
# THREADS
[[exercises]]
name = "threads1"
path = "exercises/threads/threads1.rs"
mode = "compile"
hint = """
`JoinHandle` is a struct that is returned from a spawned thread:
https://doc.rust-lang.org/std/thread/fn.spawn.html
A challenge with multi-threaded applications is that the main thread can
finish before the spawned threads are completed.
https://doc.rust-lang.org/book/ch16-01-threads.html#waiting-for-all-threads-to-finish-using-join-handles
Use the JoinHandles to wait for each thread to finish and collect their results.
https://doc.rust-lang.org/std/thread/struct.JoinHandle.html
"""
[[exercises]]
name = "threads2"
path = "exercises/threads/threads2.rs"
mode = "compile"
hint = """
`Arc` is an Atomic Reference Counted pointer that allows safe, shared access
to **immutable** data. But we want to *change* the number of `jobs_completed`
so we'll need to also use another type that will only allow one thread to
mutate the data at a time. Take a look at this section of the book:
https://doc.rust-lang.org/book/ch16-03-shared-state.html#atomic-reference-counting-with-arct
and keep reading if you'd like more hints :)
Do you now have an `Arc` `Mutex` `JobStatus` at the beginning of main? Like:
`let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 }));`
Similar to the code in the example in the book that happens after the text
that says "We can use Arc<T> to fix this.". If not, give that a try! If you
do and would like more hints, keep reading!!
Make sure neither of your threads are holding onto the lock of the mutex
while they are sleeping, since this will prevent the other thread from
being allowed to get the lock. Locks are automatically released when
they go out of scope.
If you've learned from the sample solutions, I encourage you to come
back to this exercise and try it again in a few days to reinforce
what you've learned :)"""
[[exercises]]
name = "threads3"
path = "exercises/threads/threads3.rs"
mode = "compile"
hint = """
An alternate way to handle concurrency between threads is to use
a mpsc (multiple producer, single consumer) channel to communicate.
With both a sending end and a receiving end, it's possible to
send values in one thread and receive them in another.
Multiple producers are possible by using clone() to create a duplicate
of the original sending end.
See https://doc.rust-lang.org/book/ch16-02-message-passing.html for more info.
"""
# SMART POINTERS # SMART POINTERS
[[exercises]] [[exercises]]
@ -1028,6 +967,67 @@ Check out https://doc.rust-lang.org/std/borrow/enum.Cow.html for documentation
on the `Cow` type. on the `Cow` type.
""" """
# THREADS
[[exercises]]
name = "threads1"
path = "exercises/threads/threads1.rs"
mode = "compile"
hint = """
`JoinHandle` is a struct that is returned from a spawned thread:
https://doc.rust-lang.org/std/thread/fn.spawn.html
A challenge with multi-threaded applications is that the main thread can
finish before the spawned threads are completed.
https://doc.rust-lang.org/book/ch16-01-threads.html#waiting-for-all-threads-to-finish-using-join-handles
Use the JoinHandles to wait for each thread to finish and collect their results.
https://doc.rust-lang.org/std/thread/struct.JoinHandle.html
"""
[[exercises]]
name = "threads2"
path = "exercises/threads/threads2.rs"
mode = "compile"
hint = """
`Arc` is an Atomic Reference Counted pointer that allows safe, shared access
to **immutable** data. But we want to *change* the number of `jobs_completed`
so we'll need to also use another type that will only allow one thread to
mutate the data at a time. Take a look at this section of the book:
https://doc.rust-lang.org/book/ch16-03-shared-state.html#atomic-reference-counting-with-arct
and keep reading if you'd like more hints :)
Do you now have an `Arc` `Mutex` `JobStatus` at the beginning of main? Like:
`let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 }));`
Similar to the code in the example in the book that happens after the text
that says "We can use Arc<T> to fix this.". If not, give that a try! If you
do and would like more hints, keep reading!!
Make sure neither of your threads are holding onto the lock of the mutex
while they are sleeping, since this will prevent the other thread from
being allowed to get the lock. Locks are automatically released when
they go out of scope.
If you've learned from the sample solutions, I encourage you to come
back to this exercise and try it again in a few days to reinforce
what you've learned :)"""
[[exercises]]
name = "threads3"
path = "exercises/threads/threads3.rs"
mode = "compile"
hint = """
An alternate way to handle concurrency between threads is to use
a mpsc (multiple producer, single consumer) channel to communicate.
With both a sending end and a receiving end, it's possible to
send values in one thread and receive them in another.
Multiple producers are possible by using clone() to create a duplicate
of the original sending end.
See https://doc.rust-lang.org/book/ch16-02-message-passing.html for more info.
"""
# MACROS # MACROS
[[exercises]] [[exercises]]