42 lines
1.7 KiB
Python
42 lines
1.7 KiB
Python
|
# NOTE: Far from the most optimal solution to the problem.
|
||
|
# Time complexity: O(n^3)
|
||
|
# Space complexity: O(n^2) // NOTE: Really? And how?
|
||
|
class Solution:
|
||
|
def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
|
||
|
arr_len = len(nums)
|
||
|
|
||
|
# Helps keep out duplicates
|
||
|
nums.sort()
|
||
|
|
||
|
# Will be a dict with each key storing a `set` of 2-tuples (pair of nums)
|
||
|
diff_cache = {}
|
||
|
|
||
|
quadruplets = set()
|
||
|
|
||
|
# No point in iterating with the last element since we won't be adding
|
||
|
# any new quadruplets at that point
|
||
|
for i in range(1, arr_len - 1):
|
||
|
for j in range(i + 1, arr_len):
|
||
|
current_sum = nums[i] + nums[j]
|
||
|
difference = target - current_sum
|
||
|
|
||
|
if difference in diff_cache:
|
||
|
# diff_cache could have multiple pairs that add up to the same
|
||
|
# `difference`. We need to form quadruplets with all of them
|
||
|
# and store them in `quadruplets`
|
||
|
for pair in diff_cache[difference]:
|
||
|
quadruplets.add(pair + (nums[i], nums[j]))
|
||
|
|
||
|
# Compute sum with every element to the left of i and store
|
||
|
# in diff_cache. We do this at this later point to avoid duplicates
|
||
|
for k in range(0, i):
|
||
|
current_sum = nums[i] + nums[k]
|
||
|
|
||
|
if current_sum in diff_cache:
|
||
|
diff_cache[current_sum].add((nums[i], nums[k]))
|
||
|
else:
|
||
|
# This has to be a set to avoid duplicates
|
||
|
diff_cache[current_sum] = { (nums[i], nums[k]) }
|
||
|
|
||
|
return quadruplets
|