feat(0347_top-k-frequent-elements): add py3 soln
This commit is contained in:
parent
f2c76ac3f2
commit
569734d445
21
0347_top-k-frequent-elements/README.md
Normal file
21
0347_top-k-frequent-elements/README.md
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
Given an integer array `nums` and an integer `k`, return _the_ `k` _most frequent elements_. You may return the answer in **any order**.
|
||||||
|
|
||||||
|
**Example 1:**
|
||||||
|
|
||||||
|
Input: nums = [1,1,1,2,2,3], k = 2
|
||||||
|
Output: [1,2]
|
||||||
|
|
||||||
|
|
||||||
|
**Example 2:**
|
||||||
|
|
||||||
|
Input: nums = [1], k = 1
|
||||||
|
Output: [1]
|
||||||
|
|
||||||
|
|
||||||
|
**Constraints:**
|
||||||
|
|
||||||
|
* `1 <= nums.length <= 105`
|
||||||
|
* `k` is in the range `[1, the number of unique elements in the array]`.
|
||||||
|
* It is **guaranteed** that the answer is **unique**.
|
||||||
|
|
||||||
|
**Follow up:** Your algorithm's time complexity must be better than `O(n log n)`, where n is the array's size.
|
7
0347_top-k-frequent-elements/python3/smart.py
Normal file
7
0347_top-k-frequent-elements/python3/smart.py
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
# Time complexity: O(nlogn)
|
||||||
|
# https://github.com/python/cpython/blob/f52d987abfda25e50469c9b6fe1d19f72453d2de/Lib/collections/__init__.py#L608
|
||||||
|
from collections import Counter
|
||||||
|
|
||||||
|
class Solution:
|
||||||
|
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
|
||||||
|
return [val for val, _ in Counter(nums).most_common(k)]
|
19
0347_top-k-frequent-elements/python3/solution.py
Normal file
19
0347_top-k-frequent-elements/python3/solution.py
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
from heapq import heapify, heappop
|
||||||
|
|
||||||
|
class Solution:
|
||||||
|
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
|
||||||
|
c = Counter(nums)
|
||||||
|
|
||||||
|
# Python heapq creates a min-heap but we want a max-heap built
|
||||||
|
# against counts. Tuples are comparable in Python by default so
|
||||||
|
# we can create a tuple of (count, element) to build the heap. To
|
||||||
|
# mimic a max-heap, we can just negate the counts.
|
||||||
|
heap = [(-count, val) for val, count in c.items()]
|
||||||
|
heapify(heap)
|
||||||
|
|
||||||
|
result = [None] * k
|
||||||
|
|
||||||
|
for i, _ in enumerate(result):
|
||||||
|
result[i] = heappop(heap)[1]
|
||||||
|
|
||||||
|
return result
|
Loading…
Reference in New Issue
Block a user