42 lines
2.0 KiB
Markdown
42 lines
2.0 KiB
Markdown
Implement the `BSTIterator` class that represents an iterator over the **[in-order traversal](https://en.wikipedia.org/wiki/Tree_traversal#In-order_(LNR))** of a binary search tree (BST):
|
||
|
||
* `BSTIterator(TreeNode root)` Initializes an object of the `BSTIterator` class. The `root` of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.
|
||
* `boolean hasNext()` Returns `true` if there exists a number in the traversal to the right of the pointer, otherwise returns `false`.
|
||
* `int next()` Moves the pointer to the right, then returns the number at the pointer.
|
||
|
||
Notice that by initializing the pointer to a non-existent smallest number, the first call to `next()` will return the smallest element in the BST.
|
||
|
||
You may assume that `next()` calls will always be valid. That is, there will be at least a next number in the in-order traversal when `next()` is called.
|
||
|
||
**Example 1:**
|
||
|
||
![](https://assets.leetcode.com/uploads/2018/12/25/bst-tree.png)
|
||
|
||
Input
|
||
["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"]
|
||
[[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
|
||
Output
|
||
[null, 3, 7, true, 9, true, 15, true, 20, false]
|
||
|
||
Explanation
|
||
BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
|
||
bSTIterator.next(); // return 3
|
||
bSTIterator.next(); // return 7
|
||
bSTIterator.hasNext(); // return True
|
||
bSTIterator.next(); // return 9
|
||
bSTIterator.hasNext(); // return True
|
||
bSTIterator.next(); // return 15
|
||
bSTIterator.hasNext(); // return True
|
||
bSTIterator.next(); // return 20
|
||
bSTIterator.hasNext(); // return False
|
||
|
||
|
||
**Constraints:**
|
||
|
||
* The number of nodes in the tree is in the range `[1, 105]`.
|
||
* `0 <= Node.val <= 106`
|
||
* At most `105` calls will be made to `hasNext`, and `next`.
|
||
|
||
**Follow up:**
|
||
|
||
* Could you implement `next()` and `hasNext()` to run in average `O(1)` time and use `O(h)` memory, where `h` is the height of the tree? |